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Abstract 14 

We examine the potential for global detection of methane plumes from individual point sources with the new 15 

generation of spaceborne imaging spectrometers (EnMAP, PRISMA, EMIT, SBG) scheduled for launch in 2019-2025. 16 

These instruments are designed to map the Earth’s surface with a sampling distance as fine as 30 ´ 30 m2 but they have 17 

spectral resolution of 7-10 nm in the 2200-2400 nm band that should also allow useful detection of atmospheric 18 

methane. We simulate scenes viewed by EnMAP (10 nm spectral resolution, 180 signal-to-noise ratio) using the 19 

EnMAP End-to-End Simulation Tool with superimposed methane plumes generated by large-eddy simulations. We 20 

retrieve atmospheric methane and surface reflectivity for these scenes using the IMAP-DOAS optimal estimation 21 

algorithm. We find an EnMAP precision of 4-13% for atmospheric methane depending on surface type, allowing 22 

effective single-pass detection of 100+ kg h-1 methane point sources depending on surface brightness, surface 23 

homogeneity, and wind speed. Successful retrievals over very heterogeneous surfaces such as an urban mosaic require 24 

finer spectral resolution. We simulated the EnMAP capability with actual plume observations over oil/gas fields in 25 

California from the airborne AVIRIS-NG sensor (3 ´ 3 m2 pixel resolution, 5 nm spectral resolution, SNR 200-400). 26 

We spectrally and spatially downsampled AVIRIS-NG images to match EnMAP instrument specifications and found 27 

that we could successfully detect point sources of ~100 kg h-1 over bright surfaces. Estimated emission rates inferred 28 

with a generic Integrated Mass Enhancement (IME) method agreed within a factor of 2 between EnMAP and AVIRIS-29 

NG. Better agreement may be achieved with a more customized IME method. Our results suggest that imaging 30 
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 2 

spectrometers in space could play a transformative role in the future for quantifying methane emissions from point 31 

sources on a global scale.  32 

 33 

1 Introduction 34 

Methane is a powerful greenhouse gas, yet its sources are highly uncertain. Quantifying methane emissions 35 

from different sources is critical for developing strategies to reduce atmospheric methane levels. Anthropogenic 36 

emissions originate from a large number of point sources (coal mine vents, oil/gas facilities, livestock operations, 37 

landfills, wastewater treatment plants) that are individually small, spatially clustered, often intermittent, and difficult to 38 

quantify (Allen et al., 2013; Frankenberg et al., 2016). Here we investigate the unique potential of new-generation 39 

satellite instruments designed to map the Earth’s surface (imaging spectrometers) to also detect methane point sources 40 

in the shortwave infrared (SWIR).  41 

There has been considerable interest in using SWIR satellite observations of atmospheric methane columns by 42 

solar backscatter to detect methane sources and test emission inventories (Jacob et al., 2016). These observations are 43 

traditionally made by atmospheric sensors with high spectral resolution (<1 nm) to capture the fine structure of 44 

methane absorption lines (Table 1). The requirement of high spectral resolution has generally implied a coarse pixel 45 

resolution (>1 km) to achieve satisfactory signal-to-noise ratios (SNR), but this limits the ability to localize and 46 

quantify individual point sources.  Inverse analyses of observations from the SCIAMACHY instrument with 60 km 47 

pixel resolution, and from the GOSAT instrument with sparse sampling at 10 km pixel resolution, have quantified 48 

emissions over regional scales (Bergamaschi et al., 2009; Kort et al., 2014; Turner et al., 2015). The recently launched 49 

TROPOMI instrument with global daily coverage at 7 km pixel resolution (Hu et al., 2018) will refine the regional 50 

characterization but still cannot resolve point sources (Sheng et al., 2018). Planned instruments with ~1 km pixel 51 

resolution (MethaneSat, Propp et al., 2017; Geo-FTS, Xi et al., 2016) should be able to detect large point sources after 52 

inversion of several days of observations (Cusworth et al., 2018; Turner et al., 2018) but would not resolve densely 53 

clustered or temporally variable sources.  54 

Atmospheric sensors for methane generally focus on achieving high precision (<1%) and low relative bias 55 

(<0.3%), appropriate for regional characterization of sources (Buchwitz et al., 2015). However, these requirements can 56 

be relaxed if the focus is to observe individual plumes. Precision can be traded for pixel resolution because methane 57 

plumes are generally sub-kilometer in scale (Frankenberg et al., 2016), so that plume enhancements are larger when the 58 

pixel resolution is finer (Jacob et al., 2016).  In a theoretical simulation study for the GHGSat microsatellite instrument 59 
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with 50´50 m2 pixel resolution, Varon et al. (2018a) found that a 1-5% precision would be adequate for single-pass 60 

observation of plumes to quantify point sources of magnitude ~100 kg h-1. This would account for most of the total 61 

methane emitted by point sources in the United States reporting to the Greenhouse Gases Reporting Program (Jacob et 62 

al., 2016). A demonstration GHGSat instrument (GHGSat-D) launched in 2016 with an estimated precision of 13% 63 

limited by instrument imperfections, has proven able to detect large point sources in excess of 1000 kg h-1 (Varon et al., 64 

2018b).   65 

Here we examine the potential of a different class of satellite instruments, imaging spectrometers, to provide 66 

global snapshots of individual methane point sources. These instruments are designed for global coverage of land 67 

surfaces, but they may be used for atmospheric sensing as well. They have fine spatial sampling, or pixel resolution 68 

(<100 m), with coarser spectral sampling to measure vibrational overtone absorptions in surface reflectance.  Some 69 

current imagers such as Landsat (Roy et al., 2014) and WorldView-3 (http://worldview3.digitalglobe.com) have 70 

observing bands in the SWIR intended to infer soil moisture, mineral composition, and vegetation traits (Cleemput et 71 

al., 2018). However, the SWIR spectral resolutions for Landsat (100 nm) and WorldView-3 (40-50 nm) are too coarse 72 

to usefully observe methane.  The Hyperion instrument onboard NASA Earth Observing-1 had 10 nm spectral 73 

resolution in the SWIR but a very low signal to noise ratio (SNR) of 20 (Folkman et al., 2001).  74 

A new generation of imaging spectrometers set for launch over the next few years (EnMAP, PRISMA, EMIT, 75 

and an anticipated SBG investigation) will achieve ~10 nm or better spectral resolution in the SWIR with pixel 76 

resolution in the range 30-60 m and SNR of 180-400 or beyond (Table 1). Experience with airborne imaging 77 

spectrometers of comparable specifications suggests that these satellite instruments should be able to usefully observe 78 

methane plumes. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-C), with a 10 nm spectral resolution 79 

and SNR of 70 (Green et al., 1998), was able together with Hyperion to detect the massive Aliso Canyon methane leak 80 

in California (Thompson et al., 2016). The next generation AVIRIS instrument (AVIRIS-NG), with a finer spectral 81 

resolution of 5 nm and SNR of 200 (Thorpe et al., 2014), was able to detect a range of methane plumes over the Four 82 

Corners region of New Mexico including from gas processing facilities, storage tanks, pipeline leaks, well pads, and 83 

coal mine venting shafts (Frankenberg et al., 2016). AVIRIS-NG was flown over 272000 potential methane emitting 84 

facilities in California between 2016 and 2018 (CARB, 2017).  85 

 86 

2 Imaging spectrometer spectra including methane plumes  87 
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 The next generation of spaceborne imaging spectrometers in Table 1 includes PRISMA (launched March 88 

2019), EnMAP (2020), EMIT (2022), SBG (2025-2027). The AMPS instrument (proposed) would bridge the gap 89 

between surface imagers and methane sensors, by providing 1 nm SWIR spectral resolution while maintaining 30 m 90 

spatial resolution (Thorpe et al., 2016). We will focus our baseline analysis on EnMAP, for which detailed 91 

documentation is available (Guanter et al., 2015), and examine other instruments through sensitivity analyses. EnMAP 92 

is a push-broom style instrument with 10 nm resolution in the SWIR and an expected 180 SNR at 2300 nm. PRISMA 93 

(http://www.prisma-i.it/) has very similar instrument specifications as EnMAP. The EMIT instrument will fly on the 94 

International Space Station. It is slated to have a 7-10 nm spectral resolution and 60 m pixel resolution (Green et al., 95 

2018). Other investigations, such as SBG, are called for in the NASA Earth Science and Applications Decadal Survey 96 

(National Academies, 2018).  97 

Figure 1 shows simulated transmission spectra in the weak (~1650 nm) and strong (~2300 nm) SWIR methane 98 

absorption bands at the spectral resolutions of TROPOMI (0.25 nm FWHM), AVIRIS-NG (5 nm), and EnMAP (10 99 

nm). EnMAP spectra are sampled following the precise wavelength positions given in Guanter et al. (2015). The 1650 100 

nm methane band has the advantage of being near a CO2 band, so that joint retrievals of methane and CO2 can be 101 

combined with independent knowledge of the CO2 column mixing ratio to remove joint errors in surface reflectivity 102 

and atmospheric scattering (the so-called “CO2 proxy” method; Frankenberg et al. 2005a). However, the 1650 nm band 103 

is much weaker than the 2300 nm band and only the 2n Q-branch could be detected at coarser spectral resolution. 104 

Sampling the transmission spectra at the EnMAP spectral resolution yields only 8 data points in the 1650 nm band as 105 

compared to 25 in the 2300 nm band. The 2300 nm band also exhibits more resolved structure. Our early attempts to 106 

use the CO2 proxy method in the 1650 nm band with EnMAP synthetic spectra were unsuccessful. In what follows we 107 

focus on the 2300 nm band as sampled in the useful 2210 - 2410 nm range. 108 

We examined the sensitivity of EnMAP to atmospheric methane variability by generating synthetic top of 109 

atmosphere (TOA) EnMAP scenes with variable methane over a variety of surface types. We used for this purpose the 110 

EnMAP End-to-End Simulation Tool (EeteS; Segl, 2012), developed to generate EnMAP TOA spectra with expected 111 

instrument error included. EeteS takes surface information from another imaging instrument (e.g., SPOT-5), and passes 112 

the image through spatial, atmospheric, spectral, and radiometric modules to generate EnMAP spectra. The 113 

atmospheric module is based on the MODTRAN5 radiative transfer code. It assumes a horizontally invariant 1800 ppb 114 

dry air column methane mixing ratio (XCH4) and here we add methane plumes simulated with the Weather and Research 115 

Forecasting Model Large Eddy Simulation (WRF-LES) at 30 ´ 30 m2 resolution (Varon et al., 2018a). 116 
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Figure 2 shows a simulated red-blue-green (RGB) EeteS image over Berlin. We consider four scenes within 117 

this domain to add WRF-LES methane plumes and perform subsequent retrievals. The scenes - Grass, Dark (water), 118 

Bright, Urban - have mean SWIR surface reflectances of 0.09, 0.02, 0.30, 0.13, respectively. The urban scene is highly 119 

heterogeneous. The WRF-LES simulation is conducted with 30 ´ 30 m2 resolution (the EnMAP pixel resolution), 100 120 

W m-2 sensible heat flux (moderately unstable meteorological conditions), and a mean wind speed of 3.5 m s-1. We 121 

generate an ensemble of 15 instantaneous plumes by sampling the WRF-LES simulation at five time slices and for 122 

three source rates of 100, 500, and 900 kg h-1. This range is typical of large (but not unusually large) point sources 123 

(Jacob et al., 2016).  124 

We compute the optical depth of the methane plume τ(λ) at wavelength λ by multiplying HITRAN absorption 125 

cross sections (sH; Kochanov et al., 2016) by the methane mixing ratio  enhancement (ΔVMR) and density of dry air 126 

(VCD) in the 72-layered atmosphere of the MERRA-2 meteorological reanalysis (Gelaro et al., 2017): 127 

τ(λ) = 	'Δ𝑉𝑀𝑅,	𝑉𝐶𝐷,	s/,,(λ).
23

,45

						(1) 128 

 129 

The plume transmission T(λ) is the negative exponential of τ(λ) weighted by the geometric airmass factor A (AMF) for 130 

the backscattered solar radiation:  131 

 132 

𝑇(λ) = 	 exp{−𝐴τ(λ)	} .					(2) 133 

 134 

Each pixel’s EeteS radiance spectrum is multiplied by this additional plume transmission. We do not add noise or 135 

aerosol effects to the plume transmission spectra because the EeteS scene already accounts for those in the computation 136 

of back-scattered radiances, and the plume transmission is just a multiplicative factor on these back-scattered radiances. 137 

Figure 3 shows an example WRF-LES plume (500 kg h-1 source rate) superimposed over the Grass and Urban scenes.   138 

EnMAP has a specific spectral resolution and SNR. We examined the sensitivity of the retrieval to these 139 

parameters by generating synthetic spectra for different spectral resolutions and SNRs, thus extending our analysis to 140 

other new-generation imaging spectrometers (Table 1). For this purpose, we interpolated EeteS surface radiance spectra 141 

to the desired spectral resolution assuming no instrument noise. We then multiplied these radiance spectra by the 142 

standard atmosphere plus WRF-LES plume transmission spectra and added uncorrelated instrument noise as per the 143 

specified SNR.  144 
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To test our EnMAP retrievals on actual data, we also downsampled AVIRIS-NG images taken from aircraft 145 

over California (CARB, 2017) to match EnMAP spatial resolution, and further convolved these spectra with a 10 nm 146 

Gaussian filter to match EnMAP spectral resolution and wavelength positions. AVIRIS-NG flew at 3-4 km above the 147 

ground, so we simulated additional extinction at higher altitudes based on the U.S standard atmosphere (Kneizys et al., 148 

1996). We compared the retrieved methane from AVIRIS-NG and the synthetic EnMAP to determine the ability of 149 

EnMAP to detect and quantify the methane point sources identified by AVIRIS-NG. 150 

 151 

3 Methane retrieval 152 

We retrieved methane from the synthetic imaging spectrometer spectra by adapting the Iterative Maximum A 153 

Posteriori - Differential Optical Absorption Spectroscopy (IMAP-DOAS) algorithm developed for AVIRIS 154 

(Frankenberg et al., 2005b; Thorpe et al., 2017; Ayasse et al., 2018). DOAS retrievals isolate higher frequency features 155 

resulting from gas absorption from lower frequency features that include surface reflectance as well as Rayleigh and 156 

Mie scattering (Bovensmann et al., 2011). A polynomial term accounts for the low frequency features (Thorpe et al., 157 

2017). 158 

 159 

3.1 State vector 160 

 In addition to methane (CH4), the retrieval must account for variable absorption by water vapor (H2O) and 161 

nitrous oxide (N2O) over the 2210-2400 nm spectral region. We parameterize low frequency spectroscopic features as a 162 

sum of Legendre polynomials of order k = [0, K] with coefficients ak. The state vector (x) optimized through the 163 

retrieval is therefore composed of the following elements: 164 

𝐱 = (𝑠B/C, 𝑠/3D, 𝑠E3D, 𝑎G, … , 𝑎I) 165 

where s is a scaling factor applied to the column mixing ratio of each gas from the U.S standard atmosphere (Kneizys et 166 

al., 1996).  We do not include aerosols in the retrieval as they play little role at the relevant spatial and spectral 167 

resolution (Ayasse et al., 2018). Methane point sources generally do not co-emit aerosols.  168 

 169 

3.2 Optimal estimation 170 

To retrieve the state vector from the Eetes TOA radiances, we use a forward model similar to previous IMAP-171 

DOAS algorithms (Thorpe et al., 2017, Ayasse et al., 2018), with a modification to the polynomial term for surface 172 

reflectance: 173 
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𝐹K(𝐱, λ) = 	 𝐼G(λ)	exp	 M−	𝐴'𝑠N'τN,O	
23

O45

P

N45

Q'𝑎R𝑃R(λ)
I

R4G

					(3) 174 

Here Fh is the high-resolution backscattered TOA radiance at wavelength l, I0(λ) is the incident TOA solar intensity, 175 

τn,l is the default optical depth from the US standard atmosphere for trace gas element n = [1,3] of the state vector at 176 

vertical level l = [1,72], sn is the scaling factor to that default optical depth optimized in the retrieval, Pk(λ) is the kth 177 

Legendre polynomial, and the ak are coefficients optimized in the retrieval. The optical depth τn,l is computed in the 178 

same fashion as Equation 1, using information from the MERRA-2 reanalysis and HITRAN absorption cross sections. 179 

For satellite retrievals, the AMF is a scalar describing the optical path through the atmosphere. In Section 4.3, we apply 180 

the IMAP-DOAS algorithm to airborne AVIRIS-NG scenes and use a vector-valued AMF that depends on the height of 181 

the aircraft. 182 

 Previous IMAP-DOAS algorithms used a simple polynomial approximation for the surface reflectance, but 183 

here we use Legendre polynomials to exploit their orthogonality. We find that K = 4 provides sufficient spectral 184 

resolution whereas previous applications using simple polynomials required K = 6 (Ayasse et al., 2018).  185 

 We compute the TOA backscattered radiances 𝐹K(𝐱, λ) over the 2210-2410 nm spectral range at 0.02 nm 186 

resolution, and assemble these in a vector Fh(x) representing the high-resolution spectrum as simulated by the forward 187 

model for a given x. We convolve this spectrum with the instrument FWHM and then sample at the known wavelength 188 

positions. For example, for EnMAP, we convolve 𝐅𝒉(𝐱) with a 10 nm FWHM and sample the resulting spectra at 189 

EnMAP’s 10 nm intervals to get the low-resolution F(x). We also explored performing separate convolutions on the 190 

high resolution transmission and polynomial terms in Equation 3, and then multiplying them together to get F(x). We 191 

found little difference in the results between methods.  192 

Observed backscattered TOA radiances (y) can be represented as  193 

𝐲 = 𝐅(𝐱) + 	𝛜					(4) 194 

where the observational error 𝛜 is the sum of instrument and forward model errors. As is commonly done for satellite 195 

retrievals, we assume that the forward model error is small compared to the instrument error characterized by the SNR. 196 

The forward model is non-linear so that the solution must be obtained iteratively. A Jacobian matrix is calculated for 197 

each iteration of the state vector  198 

𝐊𝒊 = 	
𝜕𝐅
𝜕𝐱^𝐱4𝐱𝐢

							(5) 199 

and we employ a Gauss-Newton iteration to solve iteratively for the optimal state vector (Rodgers, 2000): 200 
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𝐱,a5 =	𝐱𝐀 + (	𝐊𝒊
𝑻𝐒𝐎f𝟏𝐊𝒊 +	𝐒𝐀f𝟏)f5𝐊𝒊

𝑻𝐒𝐎f𝟏[𝑦 − 𝐅(𝐱𝒊) +	𝐊𝒊(𝐱𝒊 −	𝐱𝐀)]						(6)	 201 

Here SO = [εεT] is the observation error covariance matrix defined by the instrument SNR, xA is the prior estimate of the 202 

state vector, and SA is the prior error covariance matrix. We set a weak prior error variance for methane, 𝜎mnop
3 = 5, to 203 

accommodate large plume enhancements. The prior XCH4 estimate is 1800 ppb.  The iterative analytical solution to the 204 

inverse problem as described by equation (6) also provides the posterior error covariance matrix (𝐒q) as part of the 205 

solution: 206 

𝐒q = 	 r𝐊𝒊
𝐓𝐒𝐎f𝟏𝐊𝒊 +	𝐒𝐀f𝟏t

f5
									(7)	 207 

 208 

𝐒q	 gives information on the error correlation between retrieved methane and surface reflectivity, which is a major 209 

concern for methane retrievals (Butz et al., 2012).  210 

 211 

4. Results and Discussion 212 

4.1 EnMAP plume retrievals over different surfaces 213 

Figure 3 shows examples of the IMAP-DOAS retrievals of 500 kg h-1 and 900 kg h-1 WRF-LES plumes over 214 

the Grass and Urban scenes. Near the emission source, the 500 kg h-1 plume is clearly defined in the Grass scene. It is 215 

also detectable in the Urban scene but obscured by surface retrieval artifacts. The 900 kg h-1 plume is better captured 216 

over both surfaces, though major retrieval artifacts remain in the Urban scene. 217 

Varon et al. (2018a) previously estimated the theoretical ability of a satellite instrument to quantify source 218 

rates from point sources as a function of instrument precision, assuming a uniform surface reflectance. They concluded 219 

that an instrument with 1-5% precision on XCH4 would be able to quantify point sources with an error of 70-170 kg h-1. 220 

Here we characterize the EnMAP instrument precision as the relative root-mean squared-error (RRMSE) between the 221 

true and retrieved column methane concentrations for individual 30 ´ 30 m2 pixels in the scenes of Figure 2 including 222 

the WRF-LES plumes.  Figure 4 summarizes the results for the four scenes of Figure 2.  We find precisions of 8.2 ± 223 

0.7% for Grass, 13 ± 0.7% for Urban, and 3.7 ± 0.5% for Bright scenes. The standard deviations refer to the RRMSEs 224 

computed for the 15 different realizations of the WRF-LES plumes and for the 3 source rates of 100, 500, and 900 kg h-225 

1. The Dark scene was consistently unsuccessful, with error of at least 100% for each realization, and we do not discuss 226 

it further. The Bright scene performs the best because of the large backscattered photon flux. The Urban scene performs 227 

worse than the Grass scene, even though its average SWIR surface reflectance is larger, due to the larger variability in 228 
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reflectance over the scene including dark pixels. As illustrated in Figure 3, the 8% precision over the relatively uniform 229 

grass surface should enable EnMAP to successfully quantify 500 kg h-1 point sources in a single pass.  230 

Beyond the precision for the methane retrieval, an additional limitation for retrieving point sources is the error 231 

correlation with variable surface reflectance. This is illustrated in Figure 3 with the retrieved XCH4 enhancements over 232 

Grass and Urban scenes relative to the background. In the case of the Grass scene with a 500 kg h-1 source, the 8% 233 

precision limits the ability to observe the downwind plume but there is a clear enhancement over background at the 234 

source location. With a 900 kg h-1 source the downwind plume becomes well-defined against the background. In the 235 

case of the Urban scene, the detection of the 500 kg h-1 plume is far more problematic because of large positive artifacts 236 

over dark (water) pixels.  The 900 kg h-1 plume is still difficult to distinguish from the artifacts and would require prior 237 

knowledge of source location to be identified and quantified. The error correlation between methane and surface 238 

reflectance in the retrieval can be reduced by increasing the spectral resolution of the instrument as discussed in Section 239 

4.2.   240 

 241 

4.2 Sensitivity to instrument spectral resolution and SNR 242 

Here we examine the potential of future instruments with improved spectral resolution and SNR relative to 243 

EnMAP (Table 1) to achieve improved retrievals of point sources. Figure 5 shows the change in retrieval precision as 244 

we vary the spectral resolution from 10 to 1 nm and the SNR from 100 to 500. The precision estimates are calculated 245 

using two methods. First, we estimate the precision by evaluating the RRMSEs averaged over the Grass, Urban, and 246 

Bright scenes of Figure 2, for 3 source rates and 15 instantaneous plume realizations, following the procedure of 247 

Section 4.1. Since SNR varies on a per-pixel basis, the plotted SNRs for this method represent the mean scene SNR. 248 

Specifications of the instruments in Table 1 are identified on the plot.  Precision improves as spectral resolution and 249 

SNR increase, as expected. The dependencies are not linear, and the contours are concave, meaning that precision is 250 

more effectively improved by increasing spectral resolution by a certain factor than by increasing SNR by the same 251 

factor. Increasing the spectral resolution improves precision through multiple independent factors: by increasing the 252 

number of independent measurements across the methane interval; by increasing the effective squared depth of the 253 

sharpest methane absorptions, for improved spectral contrast relative to the continuum; and by better resolution of the 254 

unique methane absorption shape, which improves discrimination against potential surface confusers.   255 

Second, we estimate theoretical precision in Figure 5 by extracting the associated XCH4 posterior error 256 

covariance term of 𝐒q from Equation 7. Here we find that instrument precision improves more as a function of SNR than 257 
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spectral resolution, which is a different result than the first precision method. Issues with the surface retrieval drive the 258 

contrasting results between the two methods. This underscores the difficulty in assigning a single retrieved XCH4 259 

uncertainty value for different instrument configurations. For a spaceborne AVIRIS-NG instrument, multiple along-260 

track samples would increase the SNR as a function of √𝑁, where N = number of along-track frames. For the second 261 

precision method, doing multiple along-track samples improves the theoretical precision from 5% to 1%. Varon et al. 262 

(2018a) found that an instrument with 5% precision could constrain most anthropogenic point sources above 170 kg h-1. 263 

Using both the RRMSE and theoretical precision methods of Figure 5, we find that a spaceborne AVIRIS-NG 264 

instrument (spectral resolution 5 nm, SNR 200-400) would have a precision of 5.5 – 1.0%, meaning that such an 265 

instrument could constrain a majority of anthropogenic methane point sources. 266 

A benefit of increasing spectral resolution is to improve decoupling of surface and methane spectroscopic 267 

features. We saw in Figure 3 that this was a major source of error over inhomogeneous surfaces such as the Urban 268 

scene. It is manifested in the retrieval by an error correlation between state vector elements sCH4 (scaling factor for 269 

methane column mixing ratios) and ak (coefficients for the surface reflectivity described by Legendre polynomials). 270 

This error correlation is described by the posterior error covariance matrix 𝐒q obtained as part of the retrieval (Equation 271 

6).  For example, the error correlation decreases significantly between EnMAP (r = -0.33) and AMPS (r = -0.19). This 272 

driven by the increase in spectral resolution from 10 nm to 1 nm. A separate test shows that simply increasing the SNR 273 

to 300 (as for SBG) does not improve the error correlation.  274 

An important implication of decoupling XCH4 from the surface reflectance in the retrieval is to improve the 275 

capability for plume pattern recognition, which is necessary to convert observed plume methane enhancements into 276 

source rates (Varon et al., 2018a).  Figure 6 illustrates this for the Grass and Urban scenes of Figure 3 including the 277 

plume from the 500 kg h-1 point source.  Following Varon et al. (2018a), we define the plume for the retrieved scenes 278 

with a plume mask that applies median and Gaussian filters to pixels above the 80th percentile of XCH4 within the scene.  279 

Retrievals are performed with the specifications of the EnMAP instrument (10 nm spectral resolution, SNR 180), SBG 280 

(10 nm, 300), and AMPS (1 nm, 400). 281 

For the Grass scene we find that all three instruments can discern the plume pattern near the emission source 282 

and separate it from surface features. SBG and AMPS capture larger plume domains because of their higher precisions 283 

(Figure 5), but a source rate can still be estimated successfully with EnMAP by taking into account the dependence of 284 

the retrieved plume extent on instrument precision (Varon et al., 2018a). For the Urban scene, EnMAP plume detection 285 

is swamped by surface artifacts. Simply increasing the SNR as in the SBG instrument does not improve the situation. 286 
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Increasing the spectral resolution to 1 nm as in the AMPS instrument enables detection of the plume though 287 

quantification would still be prone to surface artifacts. 288 

 289 

4.3 Evaluation with AVIRIS-NG observations 290 

 To test the EnMAP retrieval capability with actual observations, we downsampled AVIRIS-NG spectra taken 291 

over California methane emitting facilities (CARB, 2017). We chose three scenes observed by AVIRIS-NG on 292 

different days over oil and gas facilities. Figure 7 shows the RGB images, the AVIRIS-NG plume retrievals performed 293 

by applying the method of Section 3 with a variable AMF, and the downsampled EnMAP retrievals.  Plume masks 294 

have been applied in the same way as for Figure 6. At the altitudes used for the California survey, AVIRIS-NG has 3´3 295 

m2 pixel resolution and hence features much sharper methane enhancements than EnMAP (note the different scales for 296 

the middle and right panels).   297 

We see from Figure 7 that EnMAP is able to detect the same plumes as AVIRIS-NG (two plumes in the 298 

bottom panels). This is facilitated by the brightness of the surfaces. The surface reflectivities retrieved simultaneously 299 

with the methane enhancements in our IMAP-DOAS algorithm are 0.39-0.49, brighter than the Bright EeteS scene in 300 

Section 4.1.  301 

The plume observations can be related to the corresponding source rates by computing the integrated mass 302 

enhancements (IME) within the plume mask (Frankenberg et al., 2016; Varon et al., 2018a). The IME is calculated as: 303 

𝐼𝑀𝐸 =	∑ ΔΩ,E
,45 Λ, 		(7)  304 

where ΔΩ, is the plume mass enhancement in pixel i relative to background (kg m-2),  Λ, is the corresponding area of 305 

the pixel, and the summation is over the N pixels within the plume mask. The point source rate Q  is then inferred from 306 

the IME as (Varon et al., 2018a) 307 

𝑄 =
𝑈~��
𝐿 	𝐼𝑀𝐸		(8) 308 

where 𝐿 = 	�∑ ΛE
,45 , is a characteristic plume size and 𝑈~��  is an effective wind speed describing the rate of turbulent 309 

dissipation of the plume (L/Ueff is the lifetime of the plume against turbulent dissipation to below the detection limit). 310 

Varon et al. (2018a) relate Ueff to the 10-m wind speed (U10) by fitting to WRF-LES simulations. Here we use their 311 

relationship derived for the a 50 m pixel resolution, 5% precision instrument (Varon et al., 2018), and apply it as a 312 

rough approximation to the AVIRIS-NG and downsampled EnMAP plumes: 313 

𝑈~�� = 1.1 log𝑈5G + 0.6	(9)	314 
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where Ueff and U10 are in units of [m s-1]. We obtain U10 from the HRRR-Reanalysis at 3-km hourly resolution 315 

(https://rapidrefresh.noaa.gov/). 316 

Figure 7 shows the source rates inferred from the AVIRIS-NG and EnMAP retrievals for each point source. 317 

The AVIRIS-NG source rates are a factor of 1.2-3.0 greater (average 1.9) than the EnMAP source rates. There could be 318 

several factors behind this discrepancy including error correlation with surface reflectivity in the EnMAP retrieval that 319 

would cause some loss of the plume, and use of a generic plume mask and IME algorithm for both instruments. As 320 

pointed out by Varon et al. (2018a), the U10-Ueff relationship needs to be tailored to the pixel resolution and precision of 321 

the particular instrument, and to the choice of plume mask. Nevertheless, the results do confirm that EnMAP should be 322 

able to detect plumes and quantify source rates down to ~100 kg h-1 when the scene is sufficiently bright.  323 

 324 

5 Conclusions 325 

We examined the potential of next-generation spaceborne imaging spectrometers (EnMAP, PRISMA, EMIT, 326 

SBG,) for observing atmospheric methane plumes from point sources and inferring the corresponding source rates.  327 

These instruments have launch dates of 2019-2025 and focus on observing the Earth surface with fine pixel resolution 328 

(30 ´ 30 m2), but they also have observing channels at 2200-2400 nm with 7-10 nm spectral resolution that could be 329 

used to retrieve methane plumes. This would achieve much finer spatial resolution than the standard satellite 330 

instruments designed to measure atmospheric methane, and would provide a unique resource for global mapping of 331 

individual methane point sources. 332 

We focused our baseline analysis on EnMAP (spectral resolution 10 nm, SNR 180, 2020 launch date) as its 333 

specifications are well documented (Guanter et al, 2015). We created synthetic spectra using the EnMAP End-to-End 334 

Simulation Tool (EeteS) to simulate various surface scenes (Grass, Urban, Bright) with instrument errors and with 335 

superimposed methane plumes generated by a WRF Large Eddy Simulation (LES). We then retrieved these scenes for 336 

atmospheric methane together with surface reflectivities using the Iterative Maximum A Posteriori - Differential 337 

Optical Absorption Spectroscopy (IMAP-DOAS) approach. The resulting precisions for methane are 8% for the Grass 338 

scene, 13% for Urban, and 4% for Bright. A 500 kg h-1 methane plume (typical of very large point sources) is readily 339 

detected over the relatively homogeneous Grass surface. The highly heterogeneous Urban surface is much more 340 

challenging because of retrieval artifacts. 341 

The limitation of EnMAP in detecting methane plumes over heterogeneous surfaces is caused by error 342 

correlation between methane and surface reflectivity in the retrieval. We examined how precision and error correlation 343 
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could be improved by increasing spectral resolution and SNR.  We find that spectral resolution reduces error 344 

correlation more important than SNR. The proposed Atmospheric Methane Plume Spectrometer (AMPS), which 345 

bridges the gap between imaging spectrometers and atmospheric sensors (1 nm spectral resolution, SNR 400), can 346 

greatly decrease surface artifacts and detect a 500 kg h-1 plume even over the heterogeneous Urban surface. Alternative 347 

surface parameterizations might also improve XCH4 and surface separation. For example, a channelwise representation 348 

with reflectances tied through an empirical covariance structure (Thompson et al., 2018) has been used previously to 349 

improve consistency in water vapor estimations. Alternative algorithms, such as matched filter approaches (Ong et al., 350 

2019) may show different XCH4 sensitivities, and in particular may be better able to represent structured reflectances of 351 

more complex surfaces.  352 

We tested the EnMAP capability with actual observations by downsampling AVIRIS-NG images taken from 353 

aircraft (3 ´ 3 m2 pixels, 5 nm spectral resolution, SNR 200) over California methane emitting facilities (CARB, 2017). 354 

We showed that these EnMAP-like images are able to detect and quantify actual plumes of magnitude ~100 kg h-1over 355 

relatively bright surfaces. Source rates inferred from the plumes with a generic Integrated Mass Enhancement (IME) 356 

method are a factor of 1.2 to 3 lower for EnMAP than for AVIRIS-NG, which could be due in part to unaccounted 357 

dependence of the IME method on instrument pixel size and precision.  358 

In summary, our analysis shows that future spaceborne imaging spectrometers designed to map the Earth 359 

surface in the SWIR also have considerable potential for detecting methane plumes from point sources and quantifying 360 

source rates. The detection capability of 100-500 kg h-1 over relatively bright or homogeneous land surfaces would 361 

allow accounting for a wide range of point sources. The fine spatial resolution of these instruments should make them a 362 

unique resource to contribute to tiered observing systems for greenhouse gases (Duren and Miller, 2012).  363 
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Table 1. Shortwave infrared (SWIR) remote sensors for observing methane point sources 

 

Instrument 
Pixel size 

(km2) 

SWIR spectral range 

(nm)a 

Spectral 

resolution 

(nm)b 

Signal-to-

noise ratio 

(SNR)c 

Observing 

epoch 

Aircraft 

       AVIRIS-NGd 0.003 ´ 0.003 

 

1600-1700; 2200–2510 5.0 200-400e Campaigns 

Satellite 

  Atmospheric sensors 
     

       SCIAMACHYf 30 ´ 60 1630–1670 1.4 1500 2002-2012 

       GOSATg 10 ´ 10 1630–1700 0.06 300 2009- 

       GHGSath 0.05 ´ 0.05 1600–1700 0.1  TBD 2016- 

       TROPOMIi 7 ´ 7 2305–2385 0.25 100 2017- 

       AMPSj 0.03 ´ 0.03 1990–2420 1.0 200-400 Proposed 

 Imaging spectrometers 

       PRISMAk 0.03 ´ 0.03 1600-1700; 2200–2500 10 180 2019- 

       EnMAPl 0.03 ´ 0.03 1600-1700; 2200–2450 10 180 2020- 

       EMITm 0.06 ´ 0.06 1600-1700; 2200–2510 7-10 200-300 2022- 

       SBGn 0.03 ´ 0.03 1600-1700; 2200–2510 7-10 200-300 2025- 
aMethane has absorption bands near 1650 and 2300 nm. 
bSpectral resolution is represented by the full-width at half-maximum (FWHM). 5 
cFor SCIAMACHY and GOSAT, SNR is for CO2 band used in the CO2-proxy method retrieval. For other instruments, SNR 

is at 2300 nm. 
dAirborne Visible/Infrared Imaging Spectrometer – Next Generation (Thorpe et al., 2017). AVIRIS-NG provides roughly a 

ground sampling distance (GSD) of 1 m per km altitude. The Frankenberg et al. (2016) and Duren et al. (2019) campaigns 

operated at 3-4 km altitude. 10 
eAlong-track oversampling increases SNR by √𝑁 where N = number of along-track frames. AVIRIS-NG routinely achieves 

N > 4 so AVIRIS-NG effective SNR at 2300 nm can be as much as 400. 
fSCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (Frankenberg et al., 2006) 
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gTANSO-FTS instrument aboard the Greenhouse gases Observing SATellite (Kuze et al., 2016). Pixels are circles of 10 km 

diameter. 
hGreenHouse Gases Satellite (McKeever et al., 2017). Revisit times are for selected 12 ´ 12 km2 scenes. The demonstration 

GHGSat-D instrument presently in space has additional instrument imperfections that limit its precision to 13% (McKeever 

et al. 2017). 5 
iTROPOspheric Monitoring Instrument (Hu et al., 2018) 
jAirborne Methane Plume Spectrometer (Thorpe et al., 2016) 
kPRecursore IperSpettrale della Missione Applicativa (http://prisma-i.it) 
lEnvironmental Mapping and Analysis Program (Guanter et al., 2015) 
mEarth Surface Mineral Dust Source Investigation (Green et al., 2018) 10 
nSurface Biology and Geology, previously called HyspIRI (Hochberg et al., 2015) 

 

 

  

https://doi.org/10.5194/amt-2019-202
Preprint. Discussion started: 29 May 2019
c© Author(s) 2019. CC BY 4.0 License.



22 
 

 

 
 

Figure 1. Simulated top of the atmosphere (TOA) transmission spectra for different spectral resolutions (FWHM = full-

width at half-maximum) in the 1650 nm (left panel) and 2300 nm (right panel) shortwave infrared (SWIR) bands. High-5 

resolution spectra were simulated for the U.S. Standard Atmosphere with 1800 ppb total column methane using the HITRAN 

spectroscopic database and the HITRAN Application Programming Interface (HAPI) tool (Kochanov et al., 2016), and were 

then sampled with spectral resolutions of 0.25 nm (TROPOMI), 5 nm (AVIRIS-NG), and 10 nm (EnMAP) at the appropriate 

wavelength positions.  

 10 

  

1640 1660 1680 1700 2225 2275 2325 2375

SWIR transmission spectra for different resolutions and bands 

Wavelength (nm)Wavelength (nm)

Tr
an

sm
iss

io
n

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

TROPOMI (0.25 nm spectral resolution)
AVIRIS-NG (5 nm)
EnMAP (10 nm)

https://doi.org/10.5194/amt-2019-202
Preprint. Discussion started: 29 May 2019
c© Author(s) 2019. CC BY 4.0 License.



23 
 

 

 

 
 

Figure 2. RGB image of a synthetic EnMAP scene simulated using the EnMAP End-to-End Simulation Tool (EetsS) over 5 

Berlin. Four scenes with 30´30 m2 pixel resolution are shown (Grass, Dark, Bright, Urban) with average surface reflectances 

in the SWIR (2210-2410 nm) given in parentheses. These different scenes are used in Section 3 to evaluate the sensitivity of 

EnMAP to atmospheric methane.   
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Figure 3. Retrieval of a methane plume over grass and urban EnMAP scenes. The plume was generated by WRF-LES with a 

source rate of either 500 kg h-1 or 900 kg h-1. The left panels show the dry air column mixing ratio enhancements relative to 

the 1800 ppb background for a 500 kg h-1 methane plume superimposed on the RGB images of Figure 2. The middle panels 5 

show the retrieval of those enhancements using the IMAP-DOAS retrieval algorithm applied to the EnMAP instrument 

specifications. The right panels show the retrieval of the 900 kg h-1 plume. The XCH4 enhancements in the right panels are 

scaled by 5/9 to be comparable with the other panels. Negative enhancements are reset to equal the background. 
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Figure 4. Precision of atmospheric methane retrievals from the EnMAP instrument (Table 1) over different surfaces. The 

precisions are the relative root-mean squared errors (RRMSE) between the “true” methane columns in synthetic scenes and 

values obtained from the IMAP-DOAS retrieval applied to the EnMAP top-of-atmosphere (TOA) backscattered radiances. 5 

The error bars represent the standard deviation over 15 WRF-LES plume realizations and 3 source magnitudes for the plume 

(100, 500, 900 kg h-1).  
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Figure 5. Precision of methane retrievals for spaceborne imaging spectrometers observing in the SWIR (2210-2400 nm), as 

a function of instrument signal-to-noise (SNR) and full-width half-maximum (FWHM) spectral resolution. The left panel 5 

shows precision expressed as the relative root-mean-square error (RRMSE) for synthetic retrievals over three scenes of 

Figure 2 (Grass, Urban, Bright) including a point source of 100-900 kg h-1 and 15 different WRF-LES plume realizations. 

The SNR in the left panel represents the mean SNR over all three EeteS scenes. The right panel shows theoretical precision 

expressed from the posterior error covariance matrix in Equation 7. Black dots show different instrument specifications from 

Table 1. Specifications for the SBG and AMPS instruments are still at the design stage and values shown here are for the 10 

ranges under consideration.  Results given for AVIRIS-NG are for a satellite instrument with 30´30 m2 pixel resolution, with 

(1) or without (2) along-track oversampling, and with other specifications (spectral resolution, SNR) the same as the airborne 

instrument. 
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Figure 6. Plume pattern recognition applied to a point source of 500 kg h-1 over Grass and Urban scenes as shown in Figure 

3. The plume pattern is defined by applying median and Gaussian filters to pixels above the 80th percentile of XCH4 in the 

scene. Areas excluded by the mask are shown in gray. The panels show retrievals from the EnMAP, SBG, and AMPS 5 

instruments.  
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Figure 7. Retrieval of atmospheric methane plumes from oil/gas facilities imaged by the AVIRIS-NG instrument at 3-4 km 

altitude over California (CARB, 2017). The left panels show the RBG images mapped by AVIRIS-NG with the oil/gas 

facilities of interest circled. Inset in the bottom left corner is the mean retrieved SWIR surface reflectivity for the scene. The 

middle panels show the IMAP-DOAS retrieval applied to the AVIRIS-NG images with 3´3 m2 pixel resolution and 5 nm 5 

spectral resolution. The right panels show the IMAP-DOAS retrieval applied to spectra that were spatially and spectrally 
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downsampled to match EnMAP instrument specifications (30´30 m2 pixels, 10 nm spectral resolution). Note the difference 

in color scale for the methane enhancements in the AVIRIS-NG and EnMAP retrievals, reflecting the coarser pixel 

resolution of EnMAP. The plume mask is overlaid on each. The source rates for each plume obtained from the IME method 

are inset.  

 5 
 

https://doi.org/10.5194/amt-2019-202
Preprint. Discussion started: 29 May 2019
c© Author(s) 2019. CC BY 4.0 License.


